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Pretace

This book grew out of a graduate course that I gave at the University of
Cambridge in the Easter Term of 1993. The idea of publishing a somewhat en-
larged and polished version of my lectures came from Professor J.W.S. Cassels,
who, 1n addition, made it possible for me to spend my sabbatical at Cambridge
supported by a Research Grant of the SERC and an appointment as a “Visit-
ing Fellow Commoner” of Trinity College. I thank these institutions for their
help in making my stay in Cambridge a very pleasant one.

I should point out in this conn xction that a great deal of my research on
quadratic forms began in the year 1963 when I attented a colloquium talk

given by Cassels on “Sums of Squares of Rational Functions” at the University
of Gottingen. Later, our connections intensified during the Academic Year
1966/67 when I studied and lectured in Cambridge. My early Lecture Notes

[Pfister 1967,] give an idea of the status of the algebraic theory of quadratic
forms 1n those days. Thus, much of my previous work as well as the present
book owe their existence to the constant encouragement and interest of Cassels

over many years. For this reason, I wish to express my deep gratitude to him.

This book 1s not a systematic treatise on quadratic forms. Excellent books

of this kind are already available, in particular the books of O’Meara [O’M]
on the arithmetic theory over number fields and their integer domains and the
books of Lam [L] and Scharlau [S] on the algebraic theory over general fields.

The choice of material considered herein reflects my own interests and in-
corporates a considerable amount of my scientific work over the past 30 years.
It starts with some “highlights” about quadratic forms in Chapters 1 and
2. A main theme of the text concerns the field invariants: “level” (Chapter
3), “Pythagoras number” (Chapter 7), and “u-invariant” (Chapter 8). Many
people have contributed to the results presented here. Furthermore, I have em-
phasized the way in which quadratic forms lead to rich interconnections linking
algebra, number theory, algebraic geometry, and algebraic topology. Such top-
1cs are covered in Chapters 3, 4, 5, 6 and 10. Finally, systems of quadratic

forms (Chapter 9) serve as a kind of clue for relating algebraic geometry and
topology to quadratic forms. The specific topics of the various sections can
best be seen from the table of contents, and so there is no point in repeating
them here.

The prerequisites on the part of the reader are fairly modest. Standard
knowledge from introductory courses suffices for most parts of the text. In
several places where I need more advanced results a precise reference is given.
[ have tried to make the main body of the book self-contained with full proofs.
Side results or more difficult theorems which go far beyond the methods used
here are given without proofs. Examples, notes and open questions have been
added whenever possible. They can be used by the reader both to clarify his
understanding and to extend his knowledge of the concepts.



Vil Preface

[ hope that the book will prove equally well suited for graduate students,
teachers, researchers on quadratic forms, and mathematicians working 1n other
disciplines with an interest in the topics treated here. My special thanks go to
Michael Meurer for proof-reading the manuscript and to Mrs Jutta Gonska for
preparing an excellent typescript.

Mainz, December 1994 Albrecht Pfister



Chapter 1

The Representation Theorems of Cassels

§1. Preliminaries on Quadratic Forms

1.1 Definition. Let K be a (commutative) field, let n be a natural number.

An n-ary quadratic form over K 1s a homogeneous polynomial of degree 2 in
n variables with coefficients from K. It has the form

n
P(T1y. .y Tn) = ) aijziz; € Klzy,...,z5).
3,7=1

In matrix notation this can be written as follows:

Let x be the column vector with components z,,...,z,, let 2’ be its transpose

which is a row vector and let A = (a;;) be the (n by n)-matrix in M, ,(K)
which 1s determined by the coefhicients a;; of . Then

o(z) = z' Az,

1.2 Definition. Two n-ary quadratic forms ¢ and ¥ over K are called

equivalent if there is a nonsingular linear transformation 7' € GL,(K) such
that

p(z) = (Tx).

Clearly this 1s an equivalence relation. We write

Y= (over K).

From now on we shall suppose that the characteristic of K 1s different from
2. The case char K = 2 1s postponed to section 4.

For char K # 2 we can replace the coeflicients a;; by 1‘1—;—“& without chang-

ing the quadratic form ¢. Then a;; = a;;, 1.e. A 1s symmetric. Under an equiv-
alence T' the symmetric matrix A 1s replaced by the congruent matrix

B =T'AT
which 1s again symmetric. Furthermore, we see that the polynomial

p(z) = D aii; + ) (aij + aji)ziz;
; i<j

uniquely determines the matrix A if A 1s symmetric since the a;; and 2a;; (for
1 < 7) are exactly the coefhicients of ¢.
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1.3 Definition. Let char K # 2, let ¢(z) = 2’ Az be a quadratic form over
K with A = A’ and let z,y be independent indeterminate vectors. Put

by(z,y) = %’(99(9: +y) — e(z) — o(y)) = £ Ay = y' Ax.

b, 1s called “the associated symmetric bilinear form” of ¢.
Conversely, any symmetric bilinear form

b(z,y) =2'Ay  with A=A

determines a quadratic form ¢(z) := b(z,x), and these two processes are in-
verse to one another. Therefore the theories of quadratic forms over K and
of symmetric bilinear forms over K (in finitely many variables) essentially

coincide 1f char K # 2.

Every n-ary quadratic form ¢ over K induces a map @, from the vector-
space V = K™ of n-fold column vectors over K to the field K, namely

Ro:V — K, Quv):=¢p(v) forvel.
., 1s a quadratic map, 1.e. 1t has the following properties:

(1) Qu(av) = a®*Q,(v) fora € K, veV.
(2) The map B, : V x V — K given by

By(v,0) = 5(Qu(v +w) — Qulv) ~ Qu(w))

1s [{-bilinear (and symmetric).

If p(z) = 2’ Az is given by the symmetric matrix A = (a;;) and if ey,..., e,
is the standard basis of V then

1
an(ez') = QAj; and B¢(6é,6j) — 5(%‘ + aji) — ajj .

This means that A and ¢ can be reconstructed from the pair (Q,, B,).
This observation leads to the following definitions and proposition.

1.4 Definition. Let V be an n-dimensional I -vector-space. A map Q :
V — K 1s called a quadratic map and the pair (V, Q) is then called a quadratic

space over K 1t () satishes the conditions:
(1) Q(av) = a*Q(v) forae K,v e V.
(2) The map B:V x V — K given by

1

B(v,w) i= 2(Q(v + ) - Q(v) - Q(w)

1s K -bilinear.
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1.5 Definition. Two n-dimensional quadratic spaces (V,@) and (V’, Q')
over K are called isometric if there exists a K-linear isomorphism T : V — V'

such that
Q) =Q'(Tv) forallvelV.

We write: (V,Q) = (V',Q’).

1.6 Proposition. Thereisa 1-1-correspondence between equivalence classes
of n-ary quadratic forms over K and 1sometry classes of n-dimensional quadratic
spaces over .

PROOF. The correspondence ¢ ~ @, constructed above for V = K™ has

the desired properties since ¢ can be regained from (), and since every n-
dimensional K-vector-space V is isomorphic to K™.

This enables us to switch from the more algebraic language of quadratic

forms to the more geometric language of quadratic spaces and vice versa. The

latter point of view was introduced in the fundamental paper [Witt 1937] of
Witt and has been proved very usetul. If there is no danger of confusion we
will no longer distinguish between the form ¢ and the map @, i.e. we write

@ 1nstead of (), and b, instead of B,,.

1.7 Orthogonal Sums. Two quadratic spaces (V4, 1) and (Va, 2) over

K of dimensions n; and ns respectively, give rise to a quadratic space (V) ¢)
of dimension n = n; + ns, namely

<
(.
SO
= &
+ o
S
N

p(v)

for vy € V§, v4 € V, and v = vy + v € V. This space (V, ) is called the
orthogonal sum of (Vi, ;1) and (V5,¢5). We also write ¢ = ¢ @ q. If ; is
given by the symmetric matrix A; (z = 1,2) then ¢ has matrix

[ A 0
A_.(O Az).

Similarly, the orthogonal sum of r quadratic spaces can be defined for any
r € N. Up to equivalence it depends only on (the equivalence classes of) the
summands but not on their order.

Conversely, let (V,¢) be a quadratic space and let V; (: = 1,...,r) be
subspaces of V such that V =V ®... &V, and b,(v;,v;) = 0 for v; € V, v; €

Vi, 1 # 3. Then ¢ = 01 @ ... D ¢, with p; = |y, i.e. ¢ is the orthogonal sum
of the forms ;.

We can now prove
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1.8 Theorem. Let char K # 2. Then every quadratic space (V, ) over
K 1s 1sometric to an orthogonal sum of 1-dimensional spaces. In other words:

Every n-ary quadratic form ¢ over K i1s equivalent to a diagonal form 1 with
Y(z) = L7 @iz}, a; € K.

PROOF. We use induction on dimV =n. If p(v) =0 for all v € V then 1.3
shows b,(vy,v2) = 0 for any pair vy,vy € V. In this case any basis {vy,...,v,}
of V' 1s an orthogonal basis.

If p(vi) = a; # 0 for some v; € V we consider the subspace
U= (Kv))" ={ueV:b,(u,v) =0}

of all vectors u which are orthogonal to v; with respect to b,. The condition
b,(u,v;) = 0 amounts to one linear equation for u. Since p(v;) = b,(vy,v1) # 0
we have v; € U and dimU = n — 1. This shows V = Kv,; U and ¢ = p1 D @2
with 01 = ©|kev,, Y2 = ¢|u. The induction hypothesis for U finishes the proof.

Note. In the case ¢ # 0 the element a; € K* = K\{0} is any element
which has the form ¢(vy), v € V.

Notation. The diagonal form (z) = 37 a;z? is abbreviated by

Y = (a1,...,8,) = (a1) D ... D (a,).

1.9 Definition. Let A = A’ be a symmetric matrix. Let (V, ¢) with ¢(z) =
z' Az be the corresponding quadratic space.

(1) The subspace rad V = V+ = {u € V : b,(u,v) = 0 for all v € V} is
called the radical of (V, ), and 1s written as rad V.

(2) (V, ) 1s called regular if rad V = 0.

The following observations are immediate:
~—rad V={ueV:vWAv=0forallveV}={ueV:uA =0}
~rad V=0<= det A #0.

— The terms radical and regqular are invariant under 1sometry.
— If ¢ 1s not regular then ¢ = (a,,...a,) and, say, a, = 0.

This means that ¢ can be transformed into a quadratic form which actually
depends on at most n — 1 variables. Since n can be any natural number 1n our

treatment of quadratic forms we can and will henceforth assume that all forms
are regular.
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Note. Let ¢ be a quadratic form over K and let L DO K be any extension
field of K. Then ¢ may also be considered as a quadratic form over L. This

“extended” form 1s usually denoted by ¢ or ¢ ® L. We have

@ = g regular <= ¢y regular.

1.10 Definition. For an n-ary quadratic form ¢ over ' we introduce the
following notions:

(1) For a € K we say that “p represents a over K”, if there is a nonzero
vector 0 # v € K™ such that

w(v) = a.

(2) Dk(p) = {p(v):0+# ve K™} is the set of all those elements of K which

are represented by ¢ over K.

(3) Di(¢) = Di(@)\{0} C K*°.

(4) ¢ 1s called universal (over K) if Dg(p) = K°.

(5) ¢ 1s called usotropic (over K) if 0 € D (p), otherwise ¢ is called
anisotropic (over K).

Example. Consider the form ¢ = (1,1), i.e. p(z) = z% + x5 over the fields
R and C:

Over R ¢ does not represent the elements —1 and 0 since 7§ + r2 > 0 for any

pair (r1,72) # (0,0) of real numbers.

Over C ¢ does represent —1 and 0 since —1 = %, 0 = 12 4 2%. Furthermore, ¢
1s universal over C.

This shows that the notions of Definition 1.10 depend very much on the
held K, not only on .

Clearly a 1-dimensional regular space ¢ = (a),a € K*®, can never be
1sotropic. Let us study the 2-dimensional regular i1sotropic spaces over K.

1.11 Proposition. Up to equivalence there is just one regular isotropic
quadratic form ¢ of dimension 2, namely ¢(z) = 2z;z9. We have

P = (aa _a)

for an arbitrary ¢ € K°. In particular ¢ is universal.

PROOF. Let 0 # v; € V = K* be an isotropic vector. Since ¢ is regular
there exists u € V' such that b,(v,,u) # 0 and by multiplying u by a suitable
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element of K* we can arrange b,(v;,u) = 1. Clearly u is K-linearly indepen-
dent from v, since b,(v,,v1) = ¢(v1) = 0. For any A € K the vectors v; and
vz = u + Av; form a basis of V for which ¢(vy) = 0 and b,(v,,v2) = 1. Finally,

p(v2) = p(u) + 2Ab,(u,v1) + A%p(v1) = p(u) + 2A. Choosing A = _2_(222 we
get p(vg) = 0.
For an indeterminate vector x = z,v; + x3v this gives

p(z) = xip(vy) + 22122b,(v1,v2) + z30(v2) = 22 25.

For any a € K®* ¢ represents a: Take e.g. ; = 2, 3 = a. By Theorem 1.8

)
we get ¢ = (a,as) for some a; € K*. But ¢ is is<2)tropic, hence aci + azci =
0 for some pair (c;,c2) # (0,0) in K% Then cica # 0 and ay = —a(%;)z.
Therefore ¢ = (a,—a) because the coefficients in a diagonal matrix for ¢
can be multiplied by arbitrary nonzero squares from K without changing the

equivalence class of .

Notation. The (equivalence class of a) regular isotropic quadratic form of
dimension 2 over K is denoted by H. In other words: H = (1,—1). H is called
the hyperbolic plane.

Proposition 1.11 can be generalized as follows:

1.12 Proposition. Let (V,p) be a regular isotropic quadratic space over
KwithdmV =n>2.Then V=UdWwithU=ZH,dmW =n-2; p =

PROOF. As in 1.11 we find vectors v;,v, € V such that the 2-dimensional
subspace U = Kv; + Kvy of V together with-the quadratic form ¢|y 1s (iso-
metric to) the hyperbolic plane H. Put W = Ut = {w € V : b,(U,w) = 0}.
Clearly dimW > n — 2. On the other hand U N U+ = rad U = 0 since
(U, p|ly) = H is regular. Therefore dimW =n -2 and V = U & W (orthogo-
nal sum). For the form ¢ this means ¢ = (1, —1) & 9.

§2. The Main Theorem

We start with a simple observation. Let (p(:v) = ZRj:l Ai; TiTj € K[:El, .o :B,,]
be a quadratic form over a field K. Let L = K(t) be the rational function field
over K 1n one variable t. Then we have

2.1 Lemma. ¢ anisotropic over KX => ¢y anisotropic over L.

PROOF. Assume o(f) = 0 with 0 # f = (f1,...,fn), fi € L. Choose
a common denominator gg of the rational functions f;. Then f; = ﬁ with
g0, 91,---,9n € K[t] and ¢(g) = ggo(f) =0 for 0 # g = (g1,...,9n)- Let now
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0 # d € K[t] be the greatest common divisor of the polynomials ¢1,..., g,.
Then g; = dh; with h; € K|t], and hy,..., h, are relatively prime. Put A =
(h1,...,hn). Then ¢(g) = d°¢(h) = 0 is an identity in . Since K[t] is an
integral domain and d = d(t) # 0 we get ¢(h) = 0. Put ¢; = h;(0) € K, ¢ =
(€1,...,¢n). The elements are not all zero since otherwise the h;(t) would all

be divisible by t. Hence 0 # ¢ € K™ and ¢(c¢) = 0 by substituting ¢ — 0 in the
1dentity ¢(h) = 0 in K|t]. This contradicts the anisotropy of o.

2.2 Theorem. Let p(z) = ¢(z1,...,2,) = L0 a;jT;x; be an n-ary

quadratic form over the hield K, char K # 2. Let 0 # p(t) € KJt] be a

polynomial in one variable. Suppose that ¢ represents p = p(t) over the field
L = K(t). Then ¢ represents p over the ring K[t], i.e. there are polynomials

fi = fi(t) € K[t] such that o(f1,...,fn) =p.

PROOF.

1) If ¢ 1s not regular we may replace ¢ by a quadratic form in less than n
variables and argue by induction on n. For n = 1, ¢(z) = ay12%, a1 ff = p

with f; € K(t), the theorem is true since f; € K|[t] follows automatically. (Use
that Kt] is a unique factorization domain.)

2) Suppose now that ¢ is regular but isotropic. Then ¢ = H @ ) over K by
Proposition 1.12, i.e. without loss of generality

p(z) = 2x120 + YP(23,...,2,).

Put z; = p(t), o = %, z3 = ... =z, = 0. This shows that ¢ represents p over

K [t].
3) From now on ¢ is (regular and) anisotropic. By assumption we have a
representation

fl fn o

with polynomials fo,..., fn € K|t]. Without loss of generality the greatest

common divisor of fg,..., f, 1s 1.

Furthermore we may suppose that under all representations of shape (1)

the given one has minimal degree d = deg f; > 0 of the denominator fy. If
d = 0 then f; 1s a nonzero constant and we are finished.

Hypothesis: d > 0.
Then we have to derive a contradiction. We introduce the (n + 1)-dimensional

quadratic form

2) b=(-p(t)) Dy over L=K(t).

Explicitly: ¥ (zg,...,z,) = —p(t)z§ + ©(z1,...,Tn).
(1) implies ¥(fo,..., fn) = 0.
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Apply the euclidean algorithm (division by f3) to the polynomials f; (z =
0,...,n). This gives

(3) f,‘ — ngi + T (Z — 0, . o ,n) with q:,7; - I{[t], deg r, < d.

In particular, go = 1, 7o = 0, degro = —00. Put f = (for. .., fu)y g =
(g0y---,9n). Then ¥(f) = 0 and ¥(g) # 0 by the minimality condition on fy

since 0 = deg go < deg fo = d. In particular, the nonzero vectors f and g are
linearly independent over L.

(4) Define h = A f — ug € L™t! with A = ¥(g), u = 2by(f,9).
We have h = (hg,...,h,), h; € K[t]. A # 0 implies A # 0. On the other

hand we get
(5) (k) = A*P(f) — 2huby (f,9) + p'(g) = A* -0 = Ap® + pu*A = 0.

Actually we must have hg # 0. Otherwise h = (0, hy,...,h,) # 0 would give a
nontrivial solution of the equation

Y(h) = @(hy,...,hn) =0 over the field L = K (t)

whereas ¢ 1s anisotropic over L by Lemma 2.1. It remains to estimate deg hg.

We have

_ 1
~ fo
aij (fogi — fi)(fogi — f;).

(fog — f)

V(g)fo — 2by(f,9)
1 n

fO 3,7=1

(6) ho = Afo — g

This imples
deg ¥(fog — f) £ 2 max deg(fogi — fi) =2 max degr; < 2(d - 1),

1=1,...,n 1=1,...n

hence

(7) deg ho = —d + deg¥(fog — f) £ d - 2.

Thus A would give a solution of (1) which i1s “smaller” than f: Contradiction.
The proof of 2.2 1s finished.

Note. The geometric idea behind the proof of 2.2 1s as follows: The equation
) = 0 defines a quadric (hypersurface of degree 2) ) in the projective n-space

over L. The “points” f, g are different with f € ), g € (). The “line” joining
f and g intersects () in a second point A # f. It turns out that the choice (3)

for g leads to deg hy < deg fo.

Theorem 2.2 has the following partial generalization.
2.3 Generalization. Let o(z) = 3;"._, a;j7;x; be a quadratic form over
L = K(t) such that a;; € K|[t] and dega;; < 1 for all (z,7). Suppose ¢ 1s
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anisotropic over L. Let 0 # p(t) € K|[t] be a polynomial which is represented
by ¢ over L. Then p 1s already represented over K|t].

PROOF. Part 3) of the above proof carries over verbatim to this slightly
more general case. The only change is

deg ¥ (fog — f) <1+ 2maxdegr; < 2d — 1,

hence
(7') degh0_<_d-—-1 < d.

This 1s still enough to derive the contradiction.

Note. The generalization 2.3 is no longer valid if ¢ is isotropic. Let ¢ =
(t, —t), p(t) = 1. ¢ is clearly isotropic, hence universal over L = K (t). Thus ¢
represents p = 1 over L. (Derive such a representation explicitly!) But there is

clearly no solution of tf{ — tf3 = 1 with polynomials f;, fo € K|[t].

Note. At first sight 1t seems that repeated application of Theorem 2.2
would give the corresponding result for a polynomial p = p(¢;,...,t.) in sev-
eral variables. But a closer look reveals that starting from a representation

of p(t1,%2) over the ring K(%2)[t;] the procedure of the above proof with re-
spect to the vanable t5 leads to a representation over K(t;)[t3] and not over

K|t,][t] since K|t;,t5] is no longer a euclidean domain. Actually the exis-
tence of counter-examples over R(ty,%s) for ¢ = (1,...,1) with suitable n goes
e’

far back to Hilbert{1888]. Nevertheless the first explicit counter-example (for

n = 4, r = 2) was only found in the year 1967 by Motzkin[1967]. It reads as
follows:

2.4 Example. Let p(z,y) =1 — 3z2%y% + z%y? + z%y* € R[z, y]. Then

(1) p is a sum of four squares in the ring R(z)[y], hence also in the field
R(z,y).

(2) p 1s not a sum of (any finite number of) squares in the polynomial ring
Rz, y].

PROOF. 1) Check the following identities:

(1 — 2°y*)* 4+ 2%(1 — y?)? + 2%(1 — 22)%y?

1 4 z? 1 +2° - 22%° 2+ z(1l — z%)y* ?
1422 1 4+ z2

z(1 — )y’ N z2(1 - 2%)y\’
1 4+ x4 1 + x4
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2) Assume that p(z,y) = 3, fi(z,y)? for some n € N and polynomials
fi(z,y) € Rz, y]. Comparing terms of the same total degree on both sides we
find deg f; < 3 for all :. Furthermore p(0,y) = p(x,0) = 1 implies that the
polynomials f;(0,y) and f;(x,0) are constant. Altogether this gives

fi(z,y) = a; + zyli(z,y)
with a; € R and linear polynomials
Ui(z,y) = b, + ¢z + d;y € R[z, y].

But then the coefficient of the term z°y* in Y7 fi(z,y)? equals 37 b? which
cannot be —3.

3. The Subform Theorem

As 1n sections 1 and 2 we suppose char K # 2. Theorem 2.2 gives at least
the following weak result for polynomials in several variables:

3.1 Proposition. (Substitution Principle) Let ¢ be an n-ary quadratic
form over K, let 0 # p = p(t1,...,tm) € K[t;,...,tm] be a polynomial and

let ¢y,...,cm be arbitrary elements in K. If ¢ represents p over the rational
function field K(t,,...,t,,), then ¢ represents the element p(c,,...,c,) over
K. (In the case p(cy,...,cn) = 0 this may be the trivial representation of 0.)

PROOF by induction on m.
Theorem 2.2 implies that ¢ represents p(t,,...,%t,,) over K(t1,...,tm_1)tml.
Substituting c,, for t,, we see that ¢ represents p(ty,...,t;n_1,Cm) over the
held K(t1,...,tm-1). The assertion follows by induction.

Note. The substitution t,,, — ¢,, could be impossible in a representation of
p over the field K (t,,...,t,) since the denominators of the rational functions

fi 1n a representation ¢(fy,...,f,.) = p could vanish under t,, — c,,. If,
however, these denominators do not depend on the variable t,, they remain
unchanged under the substitution.

3.2 Theorem. Let d,a,,...,a, € K* and assume that ¢ = (a,,...,a,)

represents the polynomial d + a1t over K (t). Then either ¢ is isotropic over
K or ¢’ = (asq,...,a,) represents d over K.

PROOF. Suppose ¢ 1s anisotropic. By Theorem 2.2 we get

(1) ar fi + ...+ anf’ =d+ ayt?
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where f;(t) € K|t]. Comparing terms of highest degree on both sides we con-
clude that all f; must be linear in ¢, say f;(t) = b; + ¢t (z = 1,...,n). Since
char K # 2 at least one of the equations

bl +Clt = =+t

is soluble in K, say with t = ¢ € K. Then (1) implies

n

(2) D_ai(bi +cic)® =d,

=2

1.e. ¢’ represents d over K.

3.3 Corollary. Let K be a field such that ¢ = (1,...,1) is anisotropic

n
over K, 1.e. a nontrivial sum of n squares in K 1s never zero. (For example

K =Qor K =R.) Then 1+ ¢ +...+t2 is not a sum of n squares in the

rational function field K (¢y,...,t,). Similarly, t+...4 %2 is not asumof n—1
squares.

PROOF. Assume that ¢ represents 1 + ¢ + ...+ t2. Apply 3.2 with ¢t =
tn, K(t1,...,th—1) instead of K and d = 1 + ¢4 + ... + t2_,. Note that ¢

remains anisotropic over K(ty,...,t,—1). It follows that 1 +¢; + ... +¢2_, is
represented by ¢’ = (1,...,1) over K(¢1,...,t,—1). Continuing this process
n—1

we see that 1 + ¢4 is a square in K(#;): contradiction.
The second statement is an immediate consequence of the first.

3.4 Theorem. (Subform Theorem) Let ¢ = (ay,...,an), ¥ = (by,...,bn)

be regular quadratic forms over K. Suppose ¢ anisotropic. Then the following
statements are equivalent:

(1) % is 1sometric to a subform of ¢, i.e.

P =P DX

for a suitable quadratic form x over K. (Possibly x = 0 is the empty
form of dimension 0.)

(2) Dr(v) C Dr(¢p) for every field L O K (see Definition 1.10).

(3) ¢ represents the “generic value of 1”, 1.e. ¢ represents

w(tlv'--atm) — blt¥+.+bmtfn

over the rational function field K (%,,...,tn,).
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In particular all three statements imply m < n.

PROOF. The implications (1) = (2) = (3) are obvious. We prove (3) = (1)
by induction on m = dim v, the case m = 0 being trivial. Suppose now m > 0.
By 3.1 the form ¢ represents the element b; # 0 over K. (Put t; = 1,15 =
... =ty = 0). By the note after Theorem 1.8 we can write ¢ = (b;)® ', where
¢’ is automatically anisotropic. Since ¢ represents byt + (bats + ... + bnt2)
over K(t3,...,tn)(t;) we conclude from 3.2 with d = byt + ... + b, t2, that
@' represents d = Y'(t3,...,t,) if we denote the form (bs,...,b,,) by ¥'.
The induction hypothesis can now be applied to the pair ¢’,9Y’'. This gives

¢’ =Y’ d x and

pE(h)DY =)DV DX YDX.

Historical Note. For ¢ = (1,...,1) Theorem 2.2, Theorem 3.2 and Corol-

lary 3.3 are due to [Cassels 1964|. The influence of this paper on the develop-

ment of the algebraic theory of quadratic forms was enormous. Together with
the discovery of the multiplicative forms (see next chapter) it formed the basis
for a thorough research on the Witt ring W and on the invariants s, p,u of a
field (see Chapters 3, 7, 8). The generalization of the results of Cassels to an

arbitrary quadratic form ¢ (as 1t 1s presented here) was immediate. It was first
published in my paper [Pfister 1965,].

§4. Appendix: The case char K =2

For char K = 2 a lot of changes in the defimitions, propositions and theo-
rems have to be made but essentially most of the results of sections 1-3 carry
over to this case. I shall indicate the necessary changes carefully but leave the
details of some proofs to the reader. Filling in these details would be a good
test for the right understanding of the previous sections!

Defimtions 1.1 and 1.2 of a quadratic form and of equivalence were given
without restriction on the characteristic. They thus remain 1n force. But con-
trary to the case char K # 2 the matrix A of the quadratic form

n
(,0(.’3) = ' Ax = Z As; TiT; = Z a,-;:z:? + Z(a,-j + aj,-):c,-:z:j

$,7=1 1<

cannot be assumed to be symmetric. For char K = 2 ¢ remains unchanged
iff A is replaced by A + S where S = (s;;) 1s a so-called alternating matrix,
1.€. S¢s = 0, Si§ = —Sji = Sy for 2 # ] This allows us for instance to take
A as an upper triangular matrix, i.e. a;; = 0 for : > j. Under an equivalence
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T € GL,(K) A goes to T"AT and S goes to T"ST which is again alternating,
But if A is triangular then in general 7" AT is no longer triangular. Therefore
the restriction to triangular matrices A is only of minor use.

The first essential change appears in the definition of the associated sym-
metric bilinear form b, of the quadratic form ¢ which is as follows:

4.1 Definition. For char K = 2 and ¢(z) = z’ Az put

bo(z,y) = p(z +y) — p(z) — p(y) = z'(A+ A')y.

Note that A+ A’ does not change if A is replaced by A+ S with alternating
S and that

bo(z,z) = 2¢p(x) =0 (identically in z).

This definition has the consequence that the study of quadratic forms p(z) =
z' Az (where A is an arbitrary n X n matrix) and of symmetric bilinear forms

b(z,y) = 2’ Ay

(where A = A’ is a symmetric matrix) falls apart for char K = 2. The theory of
symmetric bilinear forms can be developed without even mentioning quadratic
forms which is to a certain extent the point of view in the book [MH] whereas
the theory of quadratic forms 1s intimately related to but richer than the theory
of symmetric bilinear forms.

The geometric language of quadratic spaces and 1sometries between them

can be used 1n characteristic 2 as well. Of course the factor %— in Definition

1.4 (2) has then to be cancelled. 1.5, 1.6 and 1.7 go over verbatim. Theorem
1.8 does not hold for char i = 2. It has to be replaced by Theorem 4.3 below.
We first introduce the definition of the radical and of regularity:

4.2 Definition. Let (V, ¢) be a quadratic space with associated symmetric
bilinear form b, as in 4.1.

(1) For any subspace U C V let
Ut ={w eV :b,(w,u) =0 for all u € U}
be its orthogonal space.

(2) The subspace rad V = V' is called the radical of (V, ).
(3) (V, ) is called regularif rad V = 0.

Note that for p(z) = 2’ Az the form ¢ 1s regular if and only if det(A+ A’) #
0. In particular, ¢ i1s never regular for char K =2 if A 1s a diagonal matrix.

Regularity is a much stronger restriction here than for char K # 2. Instead
of 1.8 we get

4.3 Theorem.
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(1) Every quadratic space (V,¢) has an orthogonal decomposition
V=U®radV
such that (U, ¢|v) 1s regular.

(2) ‘F’Irad v = (dl) P...D (dr) with r = dim(rad V) and d; € K

1s an orthogonal sum of 1-dimensional spaces.

(3) (U,elv) is an orthogonal sum of 2-dimensional regular quadratic spaces
(Ui,pi), t=1,...,s.

PROOF. 1) For every complement U of rad V the form ¢|y is regular since
a vector w € U+ is actually in (U®rad V)1 = V4 =rad V, hencew € UNU*
implies w € U Nrad V = {0}.
2) Clearly every basis of rad V' 1s an orthogonal basis with respect to b, since
b¢|md Vxrad Vv 15 trivial.
3) The case U = 0 1s trivial. Otherwise take an arbitrary 0 # u; € U and choose
Ug € U such that bw(’u,l,’U,g) = b 7‘—' 0. Put U1 = K'u,l -+ I{’U,g. Since b¢(u1,u1) =
2p(u;) = 0 the vector uy 1s linearly independent of u,, i.e. dimU; = 2. Let
p(u1) = a, p(uy) = c. Then we find

e(T1uy + T2us) = @(z1u1) + by(T1Ug, Tausz) + (T2us)
2

_ 2
= azxi + bxy179 + cx3.
a b

0 . ) and implies that ©; 1s

This says that ¢; = @|y, has matrix A = (

0 b
b 0

Finally U = Uy @ U with U = U N U is an orthogonal decomposition of
U and ¢|; must be regular. Replace now U by U and continue with splitting
off regular 2-dimensional subspaces. This finishes the proof.

regular since A + A’ = (

) has non-vanishing determinant.

0 c
with a,b,c € K, b # 0, of a regular 2-dimensional space (V, ). This space will
be denoted by [a, b, ¢|. Scaling the second basis vector with b~' we can always
suppose that b = 1.

In the decomposition V = U @&rad V from 4.3 the subspace (rad V, ¢|raq v)
of (V,p) is clearly unique. But the “regular part” (U, p|y) of (V,¢) is not
unique, not even up to isometry. This new phenomenon is shown by

: . . b
Notation. On the way we have found the typical matrix A = ( . )

4.4 Example. For a field & of characteristic 2 we have

1,1,1] & (1) = [0,1,0] & (1)
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but [1,1,1] = [0, 1,0] holds if and only if the quadratic equation z? +z+1 =10
has a solution in K.
Taking over verbatim Definition 1.10 to the case char K =2 we also find

4.5 Proposition. Up to isometry there is just one regular isotropic
quadratic space of dimension 2, namely the hyperbolic plane H with the form
¢ =1[0,1,0], p(z) = z122.

The simple proofs of 4.4 and 4.5 are left to the reader.

Similarly, Proposition 1.12 also holds for char K = 2. We only have to
replace the form (1, -1) by [0,1,0].

The subspace (rad V,@|raq v) of (V,¢) in Theorem 4.3 is often called the
quasilinear part of (V, ). This is explained by the rules

p(az) = a*p(z), ¢(z +y) = o(z) + ¢(y)

for a € K and z,y €rad V.
For char K = 2 the subset Ko = K? of all squares of K is a subfield of
K, since a?b? = (ab)? and a? + b = (a + b)?. Therefore K may be considered
as a vector-space over K, (which can be of finite or infinite dimension). If
now ¢lraa v = (d1,...,d,) is isotropic over K (which is automatically true for
r > dimg, K), say
dia?+...+da2=0

with ¢; € K, a, # 0, then

Ed:c —Zd (w, —:c,.) +0-x2

1.e. (d17'~- ) (dl, . ,-_1,0)
This leads to the next definition and proposition.

4.6 Definition. An n-ary quadratic form ¢ over K or its space (V, ), is
called non-defective if there is no linear transformation T' € GL,(K) such that
¢(T'z) is independent of z,.

4.7 Proposition. (V,¢) is non-defective iff ¢|yaq v is anisotropic.
The proof is left to the reader.

Note. The property “non-defective” is not invariant under field extensions

LK.

From now on we may always assume that all our spaces (V, ) are non-
defective. However, we cannot always assume that (V,¢) is regular as for
char K # 2. Obviously every anisotropic space is non-defective.
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We now have to adjust sections 2 and 3 to the case char K = 2. As regards

2.1-3 this 1s easy since we did not make use of the fact that ¢ can be diago-
nalized for char K # 2: The proof of 2.1 did not depend on char K at all. In
the proot of 2.2 we may now suppose that ¢ is non-detective. If such a ¢ 1s

1sotropic over K then for every isotropic 0 # u; € V we find ug € V such that
bo(u1,us) # 0 (since otherwise u; € rad V = 0). But then the proof of 4.3
shows that (V, ¢) contains the hyperbolic plane H as an orthogonal summand.

This imphes

(P(.’B) = T1T2 + ¢($3a RIS xn)
as in part 2) of the proof of Theorem 2.2. From this we immediately get a
representation of p over K|[t], namely z;, = p, 20 = 1, 23 = ... = z, =
0. Finally, if ¢ 1s amsotropic, part 3) of the proof of Theorem 2.2 carries

over nearly verbatim. The only change occurs in formulas (4)-(6) where p =

2by (f,9) has to be replaced by u = by (f,g). Altogether we see that 2.1, 2.2
and 2.3 hold for char K = 2 as well.

Clearly the same 1s true for Proposition 3.1.

Theorem 3.2 has to be replaced by the following.

4.8 Theorem. Let a,b,¢c,d € K with bd # 0 and assume that the K-
anisotropic quadratic form ¢ represents

atf + btltg + Ct% + d

over the field K(t1,t2). Then ¢ = |a,b, c] ® x (over K) such that x represents
d over K.

SKETCH OF PROOF.

(1) Show that ¢ represents at{ + bty + c over K(t;) and d over K. (Use 3.1.)

(2) By 2.2 ¢ represents at{ + bty +c over K[t], say o(fi,..., fn) = at?+bt; +
¢, fi € K[t;]. Since ¢ is anisotropic deduce that the f; are linear. Com-
pare coeflicients, find vectors u,v over K such that p(u) = a, b,(u,v) =

b, o(v) = c.
(3) Repeat step (2) for a representation of
at? 4 (bty)t, + (ctz +d) over K(to)[t]
and find vectors u’,w’ over K(t3) with
p(u') = a, by(u',w') = bty, p(w’) = ct5 + d.

If v =u put w=w'. Otherwise u — v/ =u + v’ # 0, hence p(u + v') =
p(u) + ¢(u') + by(u,u’) = 2a + by(u,u’) # 0 since ¢ is anisotropic,
1.e. b,(u,u’) # 0. Consider the linear transformation 7' of K(t3)™ which
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interchanges v and u’ and 1s the 1dentity on the orthogonal complement
of the (regular) 2-dimensional subspace generated by v and u’. Then T
is a self-isometry of ¢ ® K(23) since p(u) = p(u’') = a. Put Tw’ = w.
Then 1n any case

(%) p(u) = a, b,(u,w) = bty, p(w) = cts + d.

(4) Show by using 2.2 again that w may be taken to have components in

K [tz] . Then

w ='w1t2 -+ Wq

with vectors wg, w,; over K since ¢ 1s anisotropic.

(5) Let U be the subspace of V = K™ which 1s spanned by u,w;. Deduce
from (*) that wg € U+ and

-~

elv = la, b, ], p(wo) = d.

This implies our assertion with xy = |-

Finally, Theorem 3.4 has to be replaced by

4.9 Theorem Let (V,p) and (W,1) be non-defective quadratic spaces

over I, dimV = n, dim W = m. Suppose ¢ anisotropic. Then the following
statements are equivalent:

(1) % 1s 1sometric to a subform of ¢, 1.e. there exists a subspace U of V such
that (pIU = ’l/).

(Note: U need not be an orthogonal summand of V !)
(2) Dr(v) € Dr(p) for every field L O K.

(3) ¢ represents 1(ty,...,t,) over the rational function field K(t,,...,%,,).

SKETCH OF PROOF. As for 3.4 we only have to show (3) = (1).
By Theorem 4.3 we have

Wp)=W1d...0W,drad W

with
d)lwi = [ai)biaci] (7/ — ].,...,S),
"J)Irad w = (d1> D...D (dr)
and 2s+r = m.

(1) Apply 4.8 s times and get an orthogonal decomposition
(V,(p)z Ul@@UJ@VO

such that p|y. = (a4, b;,c;] and that ¢|y, = ¢ represents

dlt? + ...+ drtf over I((tl, .o ,t,-).
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1l

(2) Show by induction on r that V; contains a subspace V; with ¢|y,
(dy,...,d.). This is trivial for r = 0 or r = 1. For r > 2 put d

doti+ ...+ d.t2. @q represents dit? +d’ over K (ts,...,t.)(t1) hence over
K (ts,...,t.)[t1]. This produces vectors vj; and v’ over K(to,...,%,) such
that @o(v]) = dy, po(v') = d’ and b,,(v],v’) = 0. On the other hand we
also know that g represents d; over K, 1.e. there 1s a vector v; over K
with po(v1) = di. As in step (3) of the last proof either we have v} = v,
or v,v; span a regular 2-dimensional subspace and there 1s a “switch”
vy — v, vV — v over the field K(i,,...,%.). In any case we get vectors
v; over K and v over K (tg,...,t,) such that

(po(’vl) — d, (po(’v) — d’, b¢(v1,v) = (.

By the induction hypothesis the equation ¢o(v) = d’ leads to a subspace
V, of Vy (over K) with

(POIV'J = (dg, v ooy dr)

For any vector v, € V5 we have pg(vy) = dyas+. . .+dra? withag,. .., a, €
K. Since ¥|raq w 1s anisotropic this implies pg(ve) # di = @o(vy) for all
Vg & VQ, 1.€. V1 ¢ VQ. Put Vl == I(’Ul +V2, U = U1 b...D U,, @Vl Then
¢|lu = 1 and the proof is finished.

Historical Note. The theory of quadratic forms over a field of character-

1stic 2 was developed by C. Arf [1941]. In particular Theorem 4.3 is due to

him. Theorems 3.2 (for char K = 2), 4.8 and 4.9 were first proved in a diploma
paper of M. Amer (Gottingen 1970).



Chapter 2

Multiplicative Quadratic Forms

§1. The Theorem of Witt

As stated in the preface we shall not develop the full algebraic theory of
quadratic forms here since this has been done in a very satisfactory way in

other books, in particular [L] and [S]. But Witt’s theorem and the definition
and existence of the Witt ring should not be missing in any book on quadratic

forms. Without them we could not even understand why multiplicative forms
are important for the theory.

As in Chapter 1 we will asume char K # 2 for our treatment but indicate
the differences which occur for char K = 2 in an appendix.

1.1 Theorem (Witt’s Cancellation Theorem)
Let ¢, 1, s be quadratic forms over K such that

P D1 = pDpy (over K).

Then ¢, = ¢y (over K).

PROOF. 1) By Theorem 1.8 of Chapter 1 all three forms may be supposed
to be diagonal since neither the assumption nor the assertion of the theorem is

changed 1t we replace ¢ or ¢, or ¢, by an equivalent form. Let, say, p(z) = 2’ Az
with diagonal matrix

ai

A =
Am

where m = dim . Let r = r(¢) denote the rank of A. Then the number of zeros
among the entries a,,...,a, equals m — r. Since an equivalence relation does

not change dimension and rank we conclude from the assumption ¢ & ¢, =
@ D p2 that

dimp, = dimps =n (say), r(p1) = r(p2).
This allows us to assume that ; and ¢, are regular. (Otherwise take away the
(-entries from ¢; and ¢, and “add” them to ¢.) In addition we may assume
by a trivial induction on dim¢ that dimyp =1, i.e. ¢ = (a) with a € K.

2)After these steps of reduction the hypothesis gives an (n 4+ 1) x (n + 1)-
matrix 1" with entries from K such that

(0 @ p1)(Tx) = (¢ ® pa)().
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Let x = (’;") where z( 1s a scalar and y 1s a column vector of length n. Similarly

t u
r=(1 v)
witht € K, u,v e K™, U € M,,(K). We get

a(tzg + u'y)’ + o1(vze + Uy) = azi + pa(y).
Since char K # 2 at least one of the two equations

:]:.’BO — tSCO + u’y

/
u

has a solution z¢ = 77 -y € K.
15 € K". Then

p1((vw’ +U)y) = p2(y).

Since ; and ¢y are regular the n X n-matrix vw’ + U must also be regular.

Hence ¢, = ¢3. Note the matrix equation v(w'y) = (vw’)y for the column
vectors v, w,y !

Put w =

Before we come to the defimtion of the Witt ring of K we introduce some
more notation. From now on all quadratic forms are supposed to be regular
and diagonal since we are only interested 1n operations and results for the set
of equivalence classes of quadratic forms over K.

1.2 Notation.
(1) G(K) = K*/K*? is the square class group of K.

(2) For ¢ = (a1,...,a,,) with a; € K*
det o = ([I7 a;) K*° € G(K) is the determinant of ¢
and

d(p) = (—l)ﬂ%‘ﬂ det p € G(K) 1s the discriminant of .

(3) For ¢ as in (2) and ¢ = (by,...,bn)
e ® Y= {ay,...,am,b1,...,b,) 1s the (orthogonal) sum of ¢ and 1) (see
also 1.7 of Chapter 1)

and

(p@’(/)f_—!_(...,aibj,...)

(4) For ¢ = (a;,...,am) and a € K°
ap = (aay,...,aa,,) is the scaling of v by a.

-1,..m 18 the (tensor) product of ¢ and 3.

l1,....n

(5) For r € Ny and any ¢

rX o=@ ...0 @

r times

1s the r-fold addition of ¢ to 1tself.
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(6) 0 x ¢ = 0 1s the empty form of dimension 0.

Notes. Since (a) = (ac?®) for a,c € K*® the diagonal entries of ¢ =
(@1,...,am) matter only up to square factors. We might take a; € G(K)

Instead of a; € K°®. If ¢ 1s replaced by an equivalent form ¢, the sym-

metric matrix A of ¢ 1s replaced by A; = TYAT with T' € GL,(K). Then
det A, = det A - (det T')*. Therefore the determinant and the discriminant of
(the equivalence class of ) ¢ are well-defined as elements of G(K). Up to equiv-
alence the order of the entries in the definition of ¢ @ 1 and ¢ ® ¥ plays no

role. We have dim(yp @ %) = dim ¢ + dim ¢ and dim(¢ ® ¥) = dim ¢ - dim .

A very simple but useful conclusion of the invariance of the determinant
under equivalence 1s the following.

1.3 Lemma. If (a, b) represents c € K*® then

(a, b) = (c,abc).

PROOF. By the note after Theorem 1.8 of Chapter 1 we have (a, b) = (c, €)
for some e € K*. Comparing determinants yields abce & K*? hence (e) =

(abc).

The next result is also immediate.

1.4 Proposition. Let ¢ be a (regular) quadratic form over K and let
c € K°*. Then we have

i represents ¢ (over K) <= ¢ @ (—c) isotropic (over K).

PROOF. 1) If ¢ represents ¢ then ¢(v) = ¢ for some vector v € K™ where
n = dim ¢. Therefore

(%

o) =t mememo

1.e. o @ (—c) is 1sotropic.

2) Let ¢ @ (—c) be isotropic. If ¢ is itself isotropic then we see from Propo-
sitions 1.11 and 1.12 of Chapter | that ( is universal, i.e. ¢ € Dg(¢). If ¢ is
anisotropic then the isotropy of ¢ @ (—c) gives an equation ¢(v) — cv? +1=0
m K with v,y € K*. Then ¢ ( - ) = c.

Un+1

Combining Witt’s Cancellation Theorem with Proposition 1.12 of Chapter
1 we get
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1.5 Theorem. (Witt Decomposition) Every (regular) quadratic form ¢
over K has an orthogonal decomposition

(p’:_‘-'z')( (1,-—1)@(,00

with 2 € Ny, ¢ anisotropic over K. The Witt index 1 1s uniquely determined
by ¢, o 1s unique up to equivalence.

PROOF. The existence of the decomposition comes from a repeated appli-

cation of Proposition 1.12 of Chapter 1, the uniqueness is a direct consequence
of the Cancellation Theorem 1.1.

Notation. ¢ 1s called the anisotropic part or kernel of .

1.6 Note. By 1.5 the full classification of (finite-dimensional) quadratic
forms over K is reduced to the following two problems:

(A) A method which decides whether a given form ¢ is isotropic or not.

(B) The classification of the anisotropic forms.

For special classes of fields, notably the fields which turn up in number
theory, both problems can be fully solved. But for general K only partial
results are known.

Concerning (A) they are of the kind: There is a numerical invariant u =

u(K) of the field K which is finite for many interesting classes of fields and
such that every form ¢ with dim¢ > u is isotropic over K (but the isotropy
problem remains open for forms with dim¢ < u). This u-invariant will be
treated quite extensively in Chapters 8 and 9.

Concerning (B) we find that the anisotropic forms “make up” a commu-
tative associative ring W (K'). Therefore (B) is considered to be equivalent to
the computation of W(K). Here quite a bit about the structure of W(K) 1s
known but a full description of W(K) is available only for special classes of
hields. We shall derive some easy properties of W(K') and give some examples
but refer to the “standard books” for a fuller treatment.

The Decomposition Theorem 1.5 allows a coarser equivalence relation for

quadratic forms than ordinary equivalence, the so-called similarity or Wiit
equivalence:

1.7 Definition. Two (regular) quadratic forms ¢,y over K which have
anisotropic parts @q, g are called similarif g = 1. Sitmilarity 1s denoted by
p ~ P.

In other words: ¢ and 1 are similar iff there exist integers r,s € Ng such
that

(,Ogr)((l,—l)@(po, gS)((l,—l)@(pg.
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Clearly ~ 1s an equivalence relation.

1.8 Notation. The set of similarnty classes ¢ of regular quadratic forms

¢ of any finite dimension n > 0 over K is denoted by W (K ). Here the empty
form ¢ = 0 of dimension 0 is counted as being regular and anisotropic.

1.9 Theorem. [Witt 1937]

The operations @, ® can be naturally defined on W(K). Using & as addition
and ® as multiplication the set W (/') becomes a commutative associative ring
with zero element 0 = 0 and unit element 1 = (1). It is called the Witt ring of
K. If multiplication 1s ignored 1t 1s called the Witt group of K.

PRrROOF. 1) For ¢, ) € W(K) where ¢, are regular quadratic forms over
K dehine

DD =pDY, PRY=0p@p.
Then @& and ® are well-defined on W(K). This 1s clear for &. For ® we have
to use the fact that

12

(1,-1) ® {a) = (a,—a) = (1,—1) for everya € K°*

which implies (1,-1) ® ¥ = (dimy) x (1, —1) for every form . It also shows
that 0 1s a zero element and 1 1s a unit element.
2) The commutative, associative and distributive laws for @& and @ on

W(K) are clear (compare 1.2). By 1.1 W(K) satisfies the cancellation law, it
1s therefore a monoid.

~

3) Every element ¢ = (a,,...,a,) € W(K) has an additive inverse, namely
' = (—a1,...,—an). Without danger of confusion we also write

¢ =6p and YpOE=vd¢.
This proves the theorem.

1.10 Examples.

(1) Let K be a quadratically closed field with char K # 2, e.g. K

Then the only anisotropic quadratic forms over K are 0 and (1). Hence

W(K)=12/2L.

(2) Let K = R. Then the only anisotropic quadratic forms over K are 0,
n X (1) and n x {(—1) where n € N. Hence W(K) = 1.

(3) Let K = F, be the finite field of p elements where p is an odd prime
number.

a) K* has exactly two square classes represented by 1 and any non-
square € € K°.
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b) € 1s a sum of two squares in K.

c) Every binary (i.e. 2-dimensional) quadratic form over K is universal.

Hence |W(K)| = 4.

d) Asaring W(K)=2/22®2/2Z for p=1 mod 4
and W(K) = 17/41 for p = 3 mod 4

PROOF.

(1) Since every a € K*® is a square we have just one 1-dimensional form,
namely 1 = (1). Every 2-dimensional form (a, b) is isotropic since b =
—ac? for some ¢ € K*. Therefore the only anisotropic forms are 0 and
1. By definition of W(K) every element w € W(K) is represented by an

anisotropic form ¢ over K (which is unique up to equivalence). Hence
\W| =2 and W =17/2Z as a ring.

(2) R®* has two square classes represented by 1 and —1. Therefore every n-
dimensional ¢ = (ai,...,a,) has the shape ¢ = r x (1) & s x (—1),
where 7,8 € Ng, r + s = n. Clearly ¢ 1s 1sotropic if » > 0 and s > 0. If,
however, s = 0 then ¢ = n x (1) = (1,...,1) i1s anisotropic since every

n
nontrivial sum of n squares in R 1s positive and therefore different from 0

(for n > 0). A similar argument works for r = 0, s = n. This shows that
W(K) = 7 as sets, and it is obvious that the ring structures on W(K)

and Z coimnade.

(3) a) As is well-known from elementary number theory there are £3=
quadratic residues and as many non-residues modulo p. This shows
K* = K**UeK*? for K = F, = Z/pZ. Alternatively the group-
homomorphism of K*® into itself which sends = to z? has kernel +1.

Therefore its image K** must contain &;—1- elements.

b) The subsets K* and ¢ — K of K both have P'{—l elements. Therefore
their intersection 1s non-empty, 1.e. there exist a,b € K such that

2 __ 2

a“ = ¢ — b°.
c) Every anisotropic binary form over F, is a scalar multiple of ¢y =
(1,—¢). It suffices to show that g is universal, 1.e. represents 1 and
e. This follows from 1 =1-1%—¢-0% e = (%) — €(%)°. Note that
ab # 0 since € 1s not a square. From 1.4 we see that every form of

dimension > 3 is isotropic. The elements of W(K') are then given
by the anisotropic forms

d) The Legendre symbol (—'-'53-) 1s 1 according as p = +1 mod 4. In
the first case (1,1) ~ (l,—1) ~ 0 which means that 1 = (1) (and
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therefore every element # 0 of W) has order 2 in the group W.

In the second case 2 x (1) = (1,1) % 0 but of course 4 x (1) ~ 0
since |W| = 4.

This finishes the proot.

Note. Example (3) can be generalized to odd prime powers ¢ = p™ 1nstead
of primes p.

§2. The Multiplicative Forms

As before let K be an arbitrary field of characteristic different from 2. For a

regular quadratic form ¢ of dimension n > 1 over K we consider two indepen-
dent indeterminate column vectors z,y of length n over K. The corresponding
row vectors are then given as 2’ = (z1,...,z,), ¥ = (y1,.--,Yn). The rational
function fields which are determined by z, resp. z and y, are denoted as follows:

K(z) = K(z1,...,Zn),
K(z,y) = K(z1,---,%n,Y1,--+,Yn)-

2.1 Definition.

a)  1s called multiplicative (over K) if there exists a vector 2’ = (zq,...,2,)
with entries 2; € K(z,y) such that the following equation holds in
K(z,y):

(1) p(z) - e(y) = ¢(2).

b) ¢ 1s called strictly multiplicative (over K) if z can be chosen to depend

hnearly on y, 1.e. if there exists a matrix T, € M, (K (z)) such that (1)
holds with z = T}, y.

In other words, we have ¢(z)p(y) = ¢(1zy) 1dentically in = and y, or
(since T, must be regular)

(2) p(z)p = ¢ over K(z).

For p(z) = z' Az with symmetric matrix A = A’ € M, (K) condition (2)
may be expressed by
(2') p(z)A=T,AT, in M, (K (z)).

The main result is the following theorem which implies in particular that
strictly multiplicative quadratic forms exist in all 2-power dimensions n = 2*.

2.2 Theorem. For arbitrary £k > 0 and aq,...,a; € K* the 2°-dimensional
form

p=(l,a1)®...® (1, a;)
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1s strictly multiphcative over K.

FIRST PROOF (using matrices). We use induction on k. The case k = 0 is
trivial: ¢ = (1), ¢(z) = 2%, A = (1). Here the matrix T, = (z) € M,(K(z))
solves equation (2').

For the inductive step k — k41 we take ¢ as above and put ¥ = p®(1,a) =
@ @ ap with @ = ay41 € K*. Let n = 2° and let A be the diagonal matrix for
. By the induction hypothesis we have

p(z) =2'Az and ¢(z)A =T,AT,.

The diagonal matrix B of v is given by

A0
B = (O aA) € Myn(K).

The “generic” value of v is given by

o= (2) B(%) = -+ vty = ) ot

where z,y are independent indeterminate column vectors of length n.

We have to show that there exists a matrix T, , € M,,(K(z,y)) such that
(*) ’I,D(SC, y)B = Ta;,yBT-’B,y'
Put

T,y = ( I aly ) with U = o(y) " o(z)T, T 1T,

-1, U
Control of (*)

We have
- AT, aAT,
Blay = ( —aAT, aAU )
and
v pp _ ( TeATs = Ty(=eAT,) Ti(aAT,) - T;(aAU)
oy TIeY T\ GTY AT, + U'(—aAT,) aT!(aAT,) + U'(aAU) )

The four entries of this matrix are as follows:

1°* entry = (z)A + ap(y)A = ¥(z,y)A;
2" entry = aT,AT, — ap(z)e(y) (T, AT,)T,; T,
— WTLAT, - a(p(z) AT,
= aT, AT, — o(T.AT,)T;'T, = 0;
37¢ entry = transpose of 2™¢ entry = 0:
4" entry = a’p(y)A + acp(y)_ch(a:)QT;Té"l(T;ATy)Tngy.
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Here the second summand simphifies to
‘190('9)“190(37)27;(T;:_IATJI)Ty = a‘P(y)_l‘P(a’)T;ATy = ap(z)A.
Thus the fourth entry equals

a*o(y)A + ap(z)A = Y(z,y)aA.
This proves (*).
Notes.

(1) Since p(z)T, ! = A~'T.A the matrix U can be written in the form U =
p(y)~' T, A~' T. AT,. This shows that U and Ty , depend “integrally”

on 1.

(2) On the other hand the factor ¢(y)~! in U cannot be avoided, i.e. it is not
possible in general to replace T , in (*) by another matrix which depends
integrally on 7, and 7, because this would contradict the theorem of
Hurwitz and Radon to be mentioned later.

SECOND PROOF (by Witt, using equivalence relations of binary quadratic

forms). Here the inductive step for ¥ = ¢ ® (1,a) = ¢ @ ap runs as follows:
We have

Y =@ ap = p(z)e @ ap(y)e = (p(z), ap(y)) @ ¢

over the field K(z,y). Now apply Lemma 1.3 with the element ¢ (z,y) = p(z)+
).

ap(y) which 1s obviously nonzero in K(z,y) and represented by (p(z), ap(y)
Then we may continue:

)

I

Y(z,y)(1,ap(z)p(y) @ ¢ = Y(z,y)(p & ap(z)e(y)p)
(z,y)(p @ ap) = Y(z,y)p over K(z,y).

This proves (2) for ¢ instead of ¢ and finishes the proof.
Obviously the second proof 1s much shorter and more elegant. But the first

proof also has its advantages. It 1s more elementary and explicit. Furthermore
1t 1mplies the following useful result.

12

2.3 Corollary. The first row of T, equals the row vector =’ A. Therefore
p(z)p(y) = ¢(2) has a solution z where the first component z, of z equals

z1 = o' Ay = by,(z,y).

PROOF. The definition of T, immediately shows: If the first line of T

equals z'A then the first line of T, , equals (z’'A, ay’A) = (‘;)’B . This proves
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the first claim by induction on k (for dime = 2%). The second claim is an
immediate consequence of the first.

The most important case of 2.2 and 2.3 occurs for a; = ... = a; = 1:
2.4 Corollary. For any 2-power n = 2* the n-fold unit form n x (1) is
strictly multiplicative. In other words there exist elements

1=1

with ¢;;(z) € K(z) = K(z1,...,2n) such that
(#f+ ...+ )W+ +ya) = (2 + .+ 2).
One can choose t;;(x) = zj,1.e. 21 = T1Y1 + ... Tn¥n.

Historical Note. I proved 2.4 in [Pfister 1965;]. On a suggestion of H. Lenz
[ generalized this to 2.2 and 2.3 in [Pfister 1965,]. Witt found his proot 1in 1967.
[t was first published in [Lo|. Multiplicative forms are generalizations of the so-
called composition forms, 1.e. regular quadratic forms ¢ over K which satisty
equation (1) with a vector z whose components z; are K-bilinear expressions
In the z;, y;, say

Zq = Z tz-jka:jyk (Z — 1,. . o ,TL)
1,k=1

with constants ¢;;; € K. A famous theorem going back to Hurwitz (1898) states

that such forms can exist only in dimensions 1, 2, 4, 8 provided char K # 2.
They can actually be realized by the forms

(1,a1) ® ... ® (1, ax)

for k = 0,1,2,3. For details see [L] Chapter V, Theorem 5.10; [Shapiro 1984];
RJ.

§3. Classification of Multiplicative Forms.
Consequences for W (I()

Using the results of section 2 it is not difficult to derive a full description ot
the multiplicative and strictly multiplicative forms.

3.1 Lemma. A (regular) quadratic form ¢ over K is multiplicative if and
only if D () is a subgroup of L*® for every extension field L of K.
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PROOF. See 1.10(3) of Chapter 1 for the definition of D;(¢).
1) If ¢ 1s multiplicative over K then ¢ represents ¢(x)p(y) over K(z,y),
hence over L(z,y). Apply Proposition 3.1 of Chapter 1 to the polynomal
p = ¢(z)p(y) € L|z,y]. This shows that ¢y represents every element o(u)p(v)
where u,v € L™, n = dim ¢. For arbitrary a = ¢(u) € D;(p) and b = p(v) €
D;(p) we get ab € Dy(p). Since 2 = (%) we also have * € D;(¢). Thus

Qa
Dy () 1s closed under multiplication and inversion. It is therefore a subgroup

of L°.
2) Conversely, if D; (@) 1s a group for every field L O K this holds in particu-
lar for the rational function field L = K(z,y) = K(z1,...,%n,¥1,..-,Yn) and

shows that ¢ represents ¢(z)p(y) over K(z,y). Hence ¢ 1s multiplicative over
K.

Corollary. Every multiplicative form ¢ over K represents all squares
a’, 0 #a € K,

or equivalently:
every multiplicative form represents 1.
The next theorem characterizes multiplicative and strictly multiplicative

forms over a field K with char K # 2.

3.2 Theorem.

(1) Every anisotropic multiplicative form ¢ over K is of type ¢ = (1,a1) ®
...® (1,a;), and hence strictly multiplicative.

(2) An isotropic form ¢ over K is always multiplicative. It is strictly multi-
plicative if and only if

p~0,ie =1 x(l,—1), 1> 1.

PROOF.

(1) We have the following implications:
o multiplicative = ¢ represents p(z)p(y) over K(z)(y) = ¢ con-
tains (x)p over K(z) by Theorem 3.4 of Chapter 1 (since ¢ remains
anisotropic over K(z)) = ¢ = ¢(x)p over K(z) since both sides have
the same dimension. Thus ¢ i1s strictly multiplicative. Let now k£ > 0 be
the maximal integer such that ¢ contains a form ¢ = (1,¢1)®...®(1, ar)
over K. We claim: ¢ = 3. Assume for a moment that ¢ = ¥ @ x with

dimy > 1, say x = (b,...). Let z be an indeterminate vector of length
2% . Then

VDX = = P(2)e ZP(2)Y D Y(2)x =Y D Y(z)x
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over K (z) since ¢ and v are strictly multiplicative. From Witt’s theorem
we deduce x = (z)x over K(z). In particular x represents bi(z) over
K(z). Applying the Subform Theorem 3.4 of Chapter 1 again we see that

X contains by whence ¢ contains ¥ @ by = ¢ ® (1,b) over K. This is a
contradiction to the maximality of k. So we must have ¥y = 0, ¢ = 9.

(2) ¢ 1sotropic => ¢ universal (over any field L O K) => ¢ represents
p(z)p(y) over K(z,y) => ¢ 1s multiplicative over K.
p Z1x(l,—-1) = ¢ & p(x)p over K(z), since (1,—-1) = f(z)(1,—1)
for any nonzero element f(z) € K(z) = ¢ is strictly multiplicative.
Conversely consider an isotropic strictly multiplicative form ¢ over K.
Let o =1 x (1,—1) ® g with ¢ > 1, ¢y anisotropic. We get

X (1L, =1) ® 0o = ¢ = p(z)p =1 x p(z)(1, —1) & p(z)po

over K(z). Cancelling (1,—-1) = ¢(z)(1,—1) : times we conclude that
po = p(x)pe over K(z).
Assume @ # 0, 1.e. pg # 0, dimpg > 1, say ¢y = (b,...). Then ¢q

represents bp(z). Since ¢ 1s anisotropic we deduce that ¢y contains by
which 1s impossible since dim ¢ > dim .

3.1 and 3.2 imply the following.

3.3 Corollary. I Dg(n) = Dy (n x (1)) is closed under multiplication for
every field K then n is a power of 2.

For particular fields the above property can of course hold without n being
a power of 2. For example Dg(n) = Dg(1) is a group for every n > 1.

Similarly, Dy (n) = Dg(4) for every n > 4 and every number field. (See
Chapter 7.)

In the rest of this section we derive some consequences for the structure of
the Witt ring W(K') which depend on or are related to multiplicative forms.

However, proofs are only given for those statements which are needed later, or

are very elementary. The more interesting things are just stated with references
to the literature.

First we consider the torsion elements in the Witt group W(K). As for
every abehan group the set W,;(K) = {w € W(K) : £ x w = 0 for some £ € N}
1s a subgroup of W(K). For w € W;(K) the smallest £ such that £ x w =0 is
called the order of w.

3.4 Theorem. W,(K) is a 2-group, i.e. the order of every element w €
Wi(K) is a power of 2.

PROOF. Suppose w' € W;(K) has order £ = 2"k where k is odd and k& > 1.
Then w = 2"w’ has odd order k. Represent w = ¢ by the anisotropic quadratic
form ¢ = (a;,...,a,,). Then k is the smallest number such that £ x ¢ ~ 0.
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Choose now any 2-power n with n > m and consider the binary form
» = {1,— Y7 z?) over K(z) = K(z,,...,z,) where the z; are indeterminates
over K. Then n x 1 is strictly multiplicative and isotropic over K(z), hence
n X ¥ ~ 0 over K(z) by Theorem 3.2.

Fromkxp~0and nxyp ~0weget kx(p®yp)~0andnx (p®y)~ 0.

This implies ¢ ® ¥ ~ 0 over K(z) since 1 is a Z-linear combination of the
odd number k and the 2-power n. Finally we find p = (37 )cp over K(x). 1

particular ¢ represents the element a, 3°7 2 over K(z). a; 3.7 z? is the generic
element represented by the quadratic form n x (a,). As ¢ was anisotropic over

K the subform theorem implies that ¢ contains n x (a¢1) and m = dimp > n:
contradiction.

As we have seen 1n section 1 the dimension and the determinant of a
quadratic form ¢ are tnvariants in the sense that they remain unchanged if ¢
is replaced by an equivalent form v = ¢. For the study of W(K) it is neces-
sary to find invariants which remain unchanged if ¢ is replaced by a similar

form ¢ ~ . It suffices to test the form ¢ = ¢ @ (1, —1). Obviously the di-
mension and the determinant are no longer invariants but the parity of the

dimension and the discriminant are invariants of the similarity class ¢. The
equations dim(p @ ¢) = dimp + dim ), dim(p ® ) = dim ¢ - dimy imply the
corresponding congruences modulo 2. This leads to the following.

3.5 Definition.

(1) eo(p) = dimep mod 2 is called the dimension index of a similarity
class p € W(K). The map ey : W(K) — Z/2Z is a surjective ring-
homomorphism.

(2) I(K) = kereg 1s called the fundamental ideal of W(K).

I(K') consists of the (classes of) even-dimensional forms.

The factor group W(K)/I(K) is isomorphic to Z/2Z via eq.
The discriminant d(@) = d(¢) defines a well-defined map from W(K) to
the square class group G(K). Unfortunately, we do not have d(¢ @ ¥) = d(¢) -

d(y) in general. But if we restrict to forms ¢ of even dimension then d(cp)
dim
(—

1)z 5 det o by the definition of the discriminant. Therefore d(¢ & ) =
A(@) - (D) if 3,9 € I(K). We get

3.6 Proposition

(1) The map e; : I(K) — G(K) with e (¢) = d(@) for p € I(K) is a

surjective group-homomorphism.
(2) kere; = I, the square of the fundamental ideal.

(3) The factor group I/I* is isomorphic to G(K) via e;.
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PROOF.
(1) ey is surjective since d({1, —a)) = aK** € G(K) for any a € K°.

(2) As a group I = I(K) is generated by the binary forms (a, b). Thus I? is
generated by the (classes of ) 4-dimensional forms

p = (a,b) ® (c,d) = (ac, ad, bc, bd).

We see immediately that d(¢) = det =1 € G(K). Hence I° lies in the
kernel of €1.

Conversely let ¢ € I be such that e,(p) = 1.

@ 18 represented by a quadratic form ¢ = (a,,...,as,) of even dimension
2n. We use induction on n. For n = 1 we have ¢ = (a;, as) with ajas €
K**. Hence a3 = —a; (up to a square factor), ¢ = a;(1,—1),% = 0 in
W(K). |
The inductive step n — 1 — n goes as follows: Write ¢ = (a1, az, az) @
(@4, ...,a24), ¢ ~ (a1, a2, a3,a1a2a3) ® (—ajazas,aq,...,as,).

Here 1 = (a1, a3, as, ajaza3) = (a1, a;) ® (1, a1a3) € I2,

and @3 = (—ajazas,ay,...,as,) has dimension 2(n—1) and discriminant
d(ps) = ;(cm) = %- = 1. Hence @5 € I by the induction hypothesis. This
proves (2).

(3) is an immediate consequence of (1) and (2).

It 1s interesting to note that the subgroup I(K) of W(K) is generated not
only by the general binary forms (e, b) but already by the multiplicative binary
forms (1,a), a € K*®. This follows from the relation (a,b) ~ (1,a) © (1, —b),
and the equation (;1:- by = (m) S (l:b), in W(K'). More generally we have
the following.

3.7 Observation. For every n € N the n-th power I of the fundamental
ideal I C W is generated (as an additive group) by the strictly multiplicative
forms ¢ = (1,01) ® ... ®(l,a,) ,a, € K* (1 =1,...,n).

It 1s this observation which somehow “explains” the importance of the
multiplicative forms for the structure theory of W(K).

It 1s convenient to introduce the following
Notation. € a;,...,a, >:=(1,a1)® ... ® (1, a,).

- Regarding 3.5 and 3.6 it is quite natural to study the quotient groups
I" = I"/I™*! for all n > 0 or even the “graded Witt ring”

W=0I""gsl'o*...
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where the multiplication I™ x I — I™*" is induced by the tensor product

I™ x I" 3 (o, ¥) — @ € I™",

Without proof I state some main results and conjectures which have been
obtained during the last 30 years:

A) For every regular quadratic space (V,¢) over K of even dimension n

B)

/)

its Clifford algebra C(y) 1s a central simple K-algebra of dimension 2".
The class c(p) of C(p) in the Brauer group B(K) of K is an invariant
of the similarity class ¢ € W(K) and it has order < 2 in B(K). (For
historical reasons this invariant i1s often called the (Minkowski-)Hasse-

Witt invariant.) See [O’M], (L], [S].

ez = c|rz is a group homomorphism ey : 12 — By(K) with I° C ker es.
Hence e, induces a homomorphism é, : I? — B;(K).

Here By(K) = {c € B(K) : 2¢ = 0}.

Merkurjev [1981] has shown that €5 i1s an isomorphism. For simpler proofs
see [Arason 1984|, [Kersten 1990].

The seemingly unrelated target groups 2/22, G(K), By(K) of the homo-
morphisms eg, €3, e; are in fact (naturally isomorphic to) the cohomology
groups H™ = H*(K) := H™(I',2/2Z) for the cases n = 0,1,2 where I' is
the absolute Galois group of the field K (1.e. the automorphism group of
K,/ K for a separable closure K, of K), operating trivially on 2/212.

It 1s therefore natural to expect higher invariants, that is group homo-
morphisms e, : I™ — H" for all n. Milnor [1970] asked whether e,, exists
and €, 1s an 1somorphism for all n and all fields (Milnor conjecture).

Up to now the following have been proved:

es exists [Arason 1975].

e4 exists, €z 1s an isomorphism [Jacob—Rost 1989 and independently
Merkurjev—-Suslin 1990/1991].

es exists, €4 1s an 1somorphism [Rost, unpublished]. Furthermore, Ara-
son, Elman and Jacob proved in a series of papers [see the survey article

1989] that for fields of low transcendence degree over the reals the full
Milnor conjecture holds.

For every field K with char K # 2 we have the following.

Intersection Theorem [Arason-Pfister 1971]

() I"(K) = 0.
NnEN
Together with the Milnor conjecture this would imply that the invariants

eo, €1, €2, - . . form a complete system of invariants for quadratic forms, at
least 1n a weak sense.
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34. Appendix: The case char K =2

As we have seen in Chapter 1 1t 1s necessary to distinguish between sym-

metric bilinear and quadratic forms if char K = 2. We shall first consider the
symmetric bilinear forms

b(z,y) =2'Ay with A= A" € M, (K).

As long as there exists a vector v € V = K" with b(v,v) # 0 we get an
orthogonal decomposition

V=Kv® (Kv)*.

If b(v,v) = 0 for every v but if there exists a pair of (necessarily independent)
vectors u,v € V such that b(u,v) # 0 we get a splitting

V =(Ku+ Kv)® (Ku+ Kv)*.

On normalizing b(u,v) = 1 we find that (Ku + Kv,b) is equivalent to the

hyperbolic plane H with matrix ((1) (1,) as a bilinear space. This proves

4.1 Theorem. Every symmetric bilinear space (V,b) over K has an or-
thogonal decomposition

(V,b) = (a1)® ... D (a,) @t x H@rad (V, d)

where (a;) i1s the 1-dimensional bilinear space Ke; with b(ej,e;) = a; # 0,
where ¢: > 0 and where rad (V,b) := {w € V : b(w,v) = 0 for all v € V'} is the
radical of the symmetric bilinear space (V, b).

From now on all bilinear spaces will be regular, 1.e. rad (V,b) = 0 or equiv-
alently det A # 0. This is no serious restriction.

Contrary to the quadratic case there are several regular isotropic symmet-
ric bilinear forms b of dimension 2 (b 1s called i1sotropic it b(z,z) = 0 has a
nontrivial solution over K), namely H and the forms M; = (a) ® (—a) =
(a)® (a), a € G(K) = K*/K**. Since az? —az2 = a(z, + z2)? the square class
of a 1s the only value represented by M, which shows that the spaces M, are
palrwise non-isometric.

Notation. M, 1s called metabolic or split plane. Clearly H is not isometric
to any M,.

The cancellation law does not hold for regular symmetric bilinear forms as
1s easily shown by

4.2 Example.
(a)D (a)® (a) = (a)® H
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and

MM, =2M,®dH forae G(K).

In order to define the Witt group of regular symmetric bilinear forms over

K it 1s therefore necessary to define M, ~ 0 for any ¢ € G(K) and H ~ 0
(since the cancellation law holds in every group).

4.3 Definition.

(1) A regular symmetric bilinear space (V,b) over K 1s called metabolic (or
split) if it 1s an orthogonal sum of isotropic planes, i.e. spaces M, or H.

We then write
(V,b) ~ 0.

(2) Two (regular) symmetric bilinear spaces (Uj,b;),(Usz,by) over K are
called stmilar, (U1, b)) ~ (Us, ba), if there exist metabolic spaces (V, b),
(V’,b) such that

(U1,b1) ® (V,b) = (U2, b2) & (V', b))

(3) The set of similarity classes of regular symmetric bilinear spaces over K

together with the operations @ (orthogonal sum) and ® (tensor product)
1s called the Witt ring W(K) of K.

Notes.

(1) From 4.1 we see that every element # 0 of W (K') may be represented by
an amsotropic diagonal space

(V,b) = (a1)® ... D (a,).
It 1s not hard to show that (V,b) is unique up to isometry.

(2) Since (a)® (a) = M, ~ 0 every element of W(K) is its own inverse with
respect to @, or 1n other words

2w =0 for every w € W(K).
(3) The multiplication on W(K) is induced by (a1) ® (a3) = (a1a3). A
coordinate-free definition is as follows: (V3,5 )®(V2, b)) = (V1® V4, b1 ®b3)
with

(51 X bz)(z u1; ® usg;, Z’Uu X 'v2j) = Zbl(uliavlj)b2(u253v2j)
i j 3,J

for uq;,v1; € Vi, ugi,vy; € Vo and finite sums over 1, .
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The dimension index eg(b) = dim b mod 2 and the discriminant (= determi-
nant) e;(b) = d(b) € G(K) are invariants of the Witt class w = b of a regular
symmetric bilinear form b (as in the case char K # 2). For more details about

W(K), especially in the case where K has finite dimension over its subfield
K?, see [Milnor 1971].

We shall now turn to quadratic forms. As seen 1n Proposition 4.5 of Chap-
ter 1 there 1s only one regular 1sotropic quadratic space of dimension 2, the
hyperbolic plane H, = [0,1,0]. (The suffix ¢ stands for quadratic, H, should
not be confused with the hyperbolic plane H as a symmetric bilinear space.)
Despite Example 4.4 of Chapter 1 we have the following important result.

4.4 Theorem. Witt’s cancellation theorem holds for regular quadratic
spaces over a field of characteristic 2, 1.e. o ® 1 = ¢ @ 3 with regular
quadratic forms ¢, ¢, @5 over I 1mplies ¢, = .

PROOF. See [Arf 1941}, [S, Ch. IX §4], [MH, App. 1] or [B, Ch. III §4].

[t 1s an 1immediate consequence of this theorem that similarity ~ and the
set Wq(K) of ssmilarity classes of regular quadratic forms over K may be
Introduced as 1n the case char K # 2. Clearly every element in Wq(K) 1s rep-
resented by a unique (up to i1sometry) anisotropic quadratic form po. Wq(K)
is an abelian group under the operation @ (= direct orthogonal sum).

4.5 Example. Every binary ¢ = [a, 1, ] satisfies ¢ @ ¢ ~ 0, hence 2w = 0
for every w € Wq(K).

PROOF. Let ey, €5, €3, e4 be the standard basis for (V, o @ ¢). Consider the

two subspaces U, generated by ey, es +e4 and U, generated by e; +e3,e4. Then
U1 = [a,l,O] = Hq, UQ = [O,].,C] = Hq and V = U1 D UQ.

Since all regular quadratic forms have even dimension the dimension 1ndex

eo(@) = dim ¢ mod 2 1s trivial on Wq(K'). The discriminant has to be replaced
by the so-called Arf invariant A(y).

4.6 Definition.

(1) For a field K of characteristic 2 let P(K) = {z* +z: z € K} (this is a
subgroup of (K, +)) and let

S(K) = K/P(K) be the additive group of separable field extensions

of degree 2 over K (for b € S(K) the field L = K(z) 1s given by the
equation 2 + = + b = 0).

(2) For a regular quadratic form

¥ = @[aia 13 Ci]
i=1
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let A(@) = A(p) = Yizq a;c; € S(K). This element is called the Arf

invariant of ¢ or .

Of course 1t has to be shown that A(¢) is well-defined and invariant under

similarity. See [Arf 1941] or [S, Ch. IX §4].
4.7 Examples.

(1) K quadratically closed, char K = 2. Then G(K) = {1}, 5(K) = 0 and
(W(K)| = 2, Wqg(K) = 0.

(2) K = F, finite field of characteristic 2 (¢ = power of 2). Then K =
K2, |S(K)| =2 and |W(K)| = |[Wq(K)| = 2.

The connection between (regular) symmetric bilinear forms and quadratic
forms over a field of characteristic 2 1s given by

4.8 Proposition. Wq(K) 1s a W(K)-module via the rules
W(K) x We(K) 3 (b) — & € Wq(K)
with
e(z@y) = bz, z)e(y),
be(z1 @ y2, 2@ y2) = b(z1,2)by(y1,Y2)-

(The underlying vector-space of ® i1s the tensor product of the underlying
spaces of b and ¢. Usually ® is therefore denoted by ® = b ® ¢.)

PROOF. See [S, Ch.I §6], [MH, App.1], (B, Ch.I] or [Sah 1962].

For regular quadratic forms over a field K with char K = 2 the notions of

multiplicative and strictly multiplicative quadratic forms may be defined as 1n
2.1.

Since there are no regular quadratic forms of dimension 1 the lowest di-

mension for a regular multiplicative form ¢ 1s 2. Also, ¢ must represent 1,
hence

This form is indeed (strictly) multiplicative and even a composition form since
it 1s the norm form of the separable quadratic extension L = K(a) with

o’ +a+a=0.
An element = = z, + z3a (21,23 € K) has conjugate

Z=2z1 +2z3(a+1) and norm Nz = zZ =7+ 123 + azs = p(z).
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Hence ¢(z)p(y) = ¢(zy) for z,y € L.
Let us now study the 2™-dimensional quadratic forms

Q0 =K Aly.e.43dn-1,4n >i= (1,0,1) X...XD (1,an__1) X []., 1,an]

wheren > 1, a, € K, a1,...,a,_1 € K* and where the forms (1, a;) are con-
sidered as regular symmetric bilinear forms. With ¢ instead of < a4,...,a, >
Theorems 2.2 and 3.2 hold for char K = 2 and the proofs can be taken over

nearly verbatim. (Note that the Subform Theorem also holds, see 4.9 of Chap-
ter 1.)

A strictly multiplicative quadratic form ¢ as above 1s a composition form
if and only if n < 3. This was proved by [Albert 1942| in complete analogy to
the case char K # 2. In the same paper he found the following interesting new

phenomenon about multiplicative quadratic forms 1n characteristic 2 if we do
not require regularity.

Let o = (1,4;)®...®(1,a,) with a; € K* be an anisotropic non-defective
diagona.l quadratic form. @ corresponds to the multi-quadratic field extension

L = K(\/ay,..., /a,) which 1s purely inseparable of degree 2™. T'he generic

element £ € L has the form

IC{1,...,n}
where z; € K, ag = 1, af = ,/a,l . a;. forI={z1, oyl 1<z'1 < 19 <
. < 1 < n. We get p(z) = = Y_IC{1,...n} arry, ay = a%. This shows

e(z)p(y) = ¢(zy), 1.€. p 1s a composntlon form for every n € N! (Of course
1t depends on the field K for which n € N a form ¢ as above can possibly be
anisotropic.)

Finally we comment on the structure of W(K) and Wq(K) and the ana-
logue of the Milnor conjecture for a field K of characteristic 2. For W (K) we
get

I/
12

{be W(K) : eg(b) = 0},
{bel:e(b)=1} and (11" =0

(For a proof see [Arason—Pfister 1971].)

For Wqgone finds I, = ker A =1@ Wq C W ® Wq = Wq. Further results
on W and Wgq may be found in [Arason 1979].

The analogue of the Milnor conjecture reads as follows:

Let Q™ be the n-th exterior power of the absolute differential module = 01, /7
Consider the homomorphism

d d n
v Q" — Q*/dOnt, a:@-l—/\ /\(—i—%n—»(a: ) LA In
Y1 Yn Yn
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Let v(n) be the kernel of v, H?*+! the cokernel of v (the classical cohomology
groups as defined at the end of section 3 cannot be used here since they vanish
for n > 1 if char K = 2). Then we have

F) Theorem of Kato.

In/In+1
"Wq/I" Wy

v(n) for alln > 0,
H™*t' for all n > 0.

eI

PROOF. See [Kato 1982].

This leads to the remarkable fact that we know more about the case char
K = 2 than about the case char K # 2!



Chapter 3

The Level of Fields, Rings, and Topological Spaces

81. The Level of Fields

In a fundamental paper of E. Artin and O. Schreier 1t was shown that
the algebraic investigation of (commutative) fields requires us to distinguish
between formally real and nonreal fields. The (formally) real fields are those
which admit at least one hinear ordering such as @ or R. They will play a role

in Chapter 6. In the present chapter we concentrate on nonreal fields. We start
with

1.1 Definition.

(1) A field K is called nonreal if —1 1s a sum of (finitely many) squares in
K. The number

s=s(K):=min{n: -1=¢€e+...+¢e withe; € K}
1s called the level of K.

(2) A field K 1s called (formally) real if —1 is not a sum of squares in K. In
this case we put s(K) = oo.

Note. The letter s stems from the German word “Stufe” for the level. The
French word 1s “niveau”.

1.2 Examples of real and nonreal fields.

Every subfield of R 1s real.

(C) =1 since —1 =74 in C.

»

)
)

3) char K =2 = ~1=1in K = s(K) = L.
)

- J 1 for ¢g=1mod 4,
S(Fq)_{?.. for ¢g=—-1mod4

(5) K local field with residue field k (not necessarily finite), char k # 2 =

s(K) = s(k).
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(6) K dyadic local field (in the classical sense, i.e. the residue field k is finite
of characteristic 2) =

1 for /—-1¢€ K,
s(K)=<¢ 2 for [K :Q]even, V/-1¢& K,
4 for [K : Q3] odd.

(7) K number field =

s(K) = max{s(K,) : pplace of K} € {1,2,4, 00}

(8) K C L = s(L) < s(K).

(9) For any field K we have

s(K) = s(K(t)) = s(K((2))

(1) —(3) and (8) are trivial.

)
(4) is easy, compare Example 1.10(3) of Chapter 2.
) follows from Hensel’s Lemma.

)

(6) In the field @ of 2-adic numbers every 2-adic integer which is congruent
to 1 mod 8 1s a square. Then

~1=6-T=124+1°4+2% 4+ (/-7)~

This shows s(Q2) < 4. On the other hand any integral square in @, is =
0, 1 or 4 mod 8. Thus any sum of three integral squares is =0, 1, 2, 3, 4,
5 or 6 mod 8. Hence —1 1s not a sum of three squares in Q,. (Show first
that —1 = €7 + €2 + €2 would imply e;, e;,e3 € Z5 since denominators
cannot cancel.) A well-known theorem of T. Springer gives the result
s(K) = 4 whenever [K : Q] is odd. The rest is easy.

(7) Apply the theorem of Minkowski and Hasse to the “local” results in (1),
(2), (5) and (6).

(9) For K (t) this follows from Lemma 2.1 of Chapter 1. The proof for the
field K((?)) of formal Laurent (power) series over K is similar.

For more details, especially those concerning parts (5)—(7), see [L, Chap-
ter 11].
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Historical Note. The result (7) was claimed by Hilbert (1902) and first
proved by [Siegel 1919] just a few years before the Hasse-Minkowski theorem.

The preceding examples motivate a question which was asked by v.d. Waer-
den 1n the early 1930s: What are the possible values for the level s of a nonreal

field? H. Kneser [1934] investigated this question a little further and proved

s = 1,2,4,8 or a multiple of 16. But the main questions remained open: Is
there a nonreal field K with s(K) > 47 Is s(K) always a power of 27
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